Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38672491

ABSTRACT

Bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils, eosinophils, fibroblasts, and macrophages with antibacterial anti-inflammatory properties. In the context of Gram-negative infection, BPI kills bacteria, neutralizes the endotoxic activity of lipopolysaccharides (LPSs), and, thus, avoids immune hyperactivation. Interestingly, BPI increases in patients with Gram-positive meningitis, interacts with lipopeptides and lipoteichoic acids of Gram-positive bacteria, and significantly enhances the immune response in peripheral blood mononuclear cells. We evaluated the antimycobacterial and immunoregulatory properties of BPI in human macrophages infected with Mycobacterium tuberculosis. Our results showed that recombinant BPI entered macrophages, significantly reduced the intracellular growth of M. tuberculosis, and inhibited the production of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, BPI decreased bacterial growth directly in vitro. These data suggest that BPI has direct and indirect bactericidal effects inhibiting bacterial growth and potentiating the immune response in human macrophages and support that this new protein's broad-spectrum antibacterial activity has the potential for fighting tuberculosis.


Subject(s)
Antimicrobial Cationic Peptides , Blood Proteins , Macrophages , Mycobacterium tuberculosis , Tumor Necrosis Factor-alpha , Humans , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/drug effects , Blood Proteins/metabolism , Blood Proteins/pharmacology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Macrophages/microbiology , Antimicrobial Cationic Peptides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tuberculosis/microbiology , Tuberculosis/immunology , Tuberculosis/drug therapy
2.
Tuberculosis (Edinb) ; 143: 102418, 2023 12.
Article in English | MEDLINE | ID: mdl-37813014

ABSTRACT

Pulmonary tuberculosis (TB) inflammation is an underestimated disease complication which anti-inflammatory drugs may alleviate. This study explored the potential use of the COX-2 inhibitors acetylsalicylic acid (ASA) and celecoxib in 12 TB patients and 12 healthy controls using a whole-blood ex vivo model where TNFα, PGE2, and LTB4 plasma levels were quantitated by ELISA; we also measured COX-2, 5-LOX, 12-LOX, and 15-LOX gene expression. We observed a significant TNFα production in response to stimulation with LPS or M. tuberculosis (Mtb). Celecoxib, but not ASA, reduced TNFα and PGE2 production, while increasing LTB4 in patients after infection with Mtb. Gene expression of COX-2 and 5-LOX was higher in controls, while 12-LOX was significantly higher in patients. 15-LOX expression was similar in both groups. We concluded that COX-2 inhibitors downregulate inflammation after Mtb infection, and our methodology offers a straightforward time-efficient approach for evaluating different drugs in this context. Further research is warranted to elucidate the underlying mechanisms and assess the potential clinical benefit.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Celecoxib/pharmacology , Celecoxib/therapeutic use , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Dinoprostone , Immunity , Inflammation/metabolism , Leukotriene B4/metabolism , Mycobacterium tuberculosis/metabolism , Tuberculosis/drug therapy , Tumor Necrosis Factor-alpha
3.
Front Immunol ; 14: 1241121, 2023.
Article in English | MEDLINE | ID: mdl-37753080

ABSTRACT

Introduction: Pulmonary dysfunction is an underestimated complication in tuberculosis (TB) infection, affecting quality of life (QoL). Although respiratory function tests objectively reflect lung disturbances in a specific moment, predictors of illness severity at the time of diagnosis are still lacking. Methods: We measured serum pro-inflammatory cytokines (TNF-α and IL-8), eicosanoids (PGE2, LTB4, RvD1, Mar1, and LXA4), a marker of tissue damage (cell-free nucleosomes), and indicators of redox status (malonaldehyde, 8-isoprostane, total oxidants, and antioxidants), as well as a score of radiological abnormalities (SRA) and a QoL questionnaire, in 25 patients with pulmonary TB at the time of diagnosis (t0) and two months after the initiation of treatment (t2). Results: We found higher antioxidant levels in the patients with the worst QoL at t0, and all the indicators of the prooxidant state were significantly reduced at t2, while the total antioxidant levels increased. LTB4, a pro-inflammatory eicosanoid, was diminished at t2, while all the pro-resolutory lipids decreased substantially. Significant correlations between the SRA and the QoL scores were observed, the latter showing a substantial reduction at t2, ranking it as a reliable tool for monitoring disease evolution during TB treatment. Discussion: These results suggest that evaluating a combination of these markers might be a valuable predictor of QoL improvement and a treatment response indicator; in particular, the oxidation metabolites and eicosanoid ratios could also be proposed as a future target for adjuvant therapies to reduce inflammation-associated lung injury in TB disease.


Subject(s)
Latent Tuberculosis , Tuberculosis, Pulmonary , Humans , Quality of Life , Antioxidants , Leukotriene B4 , Tuberculosis, Pulmonary/drug therapy , Cognition
4.
NPJ Vaccines ; 8(1): 67, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37164959

ABSTRACT

There is still a need for safe, efficient, and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at a low cost, similar to influenza virus vaccines, and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open-label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety, and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe, and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737.

5.
Biomedicines ; 11(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37189696

ABSTRACT

Severe inflammatory responses are associated with the misbalance of innate and adaptive immunity. TLRs, NLRs, and cytokine receptors play an important role in pathogen sensing and intracellular control, which remains unclear in COVID-19. This study aimed to evaluate IL-8 production in blood cells from COVID-19 patients in a two-week follow-up evaluation. Blood samples were taken at admission (t1) and after 14 days of hospitalization (t2). The functionality of TLR2, TLR4, TLR7/8, TLR9, NOD1, and NOD2 innate receptors and IL-12 and IFN-γ cytokine receptors was evaluated by whole blood stimulation with specific synthetic receptor agonists through the quantification of IL-8, TNF-α, or IFN-γ. At admission, ligand-dependent IL-8 secretion was 6.4, 13, and 2.5 times lower for TLR2, TLR4, and endosomal TLR7/8 receptors, respectively, in patients than in healthy controls. Additionally, IL-12 receptor-induced IFN-γ secretion was lower in COVID-19 patients than in healthy subjects. We evaluated the same parameters after 14 days and observed significantly higher responses for TLR2, TLR4, TLR7/8, TLR9, and NOD1, NOD2, and IFN-γ receptors. In conclusion, the low secretion of IL-8 through stimulation with agonists of TLR2, TLR4, TLR7/8, TLR9, and NOD2 at t1 suggests their possible contribution to immunosuppression following hyperinflammation in COVID-19 disease.

6.
Biotechnol Bioeng ; 120(9): 2658-2671, 2023 09.
Article in English | MEDLINE | ID: mdl-37058415

ABSTRACT

Vaccine development against dengue virus is challenging because of the antibody-dependent enhancement of infection (ADE), which causes severe disease. Consecutive infections by Zika (ZIKV) and/or dengue viruses (DENV), or vaccination can predispose to ADE. Current vaccines and vaccine candidates contain the complete envelope viral protein, with epitopes that can raise antibodies causing ADE. We used the envelope dimer epitope (EDE), which induces neutralizing antibodies that do not elicit ADE, to design a vaccine against both flaviviruses. However, EDE is a discontinuous quaternary epitope that cannot be isolated from the E protein without other epitopes. Utilizing phage display, we selected three peptides that mimic the EDE. Free mimotopes were disordered and did not elicit an immune response. After their display on adeno-associated virus (AAV) capsids (VLP), they recovered their structure and were recognized by an EDE-specific antibody. Characterization by cryo-EM and enzyme-linked immunosorbent assay confirmed the correct display of a mimotope on the surface of the AAV VLP and its recognition by the specific antibody. Immunization with the AAV VLP displaying one of the mimotopes induced antibodies that recognized ZIKV and DENV. This work provides the basis for developing a Zika and dengue virus vaccine candidate that will not induce ADE.


Subject(s)
Dengue Virus , Dengue , Vaccines , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/prevention & control , Dengue Virus/chemistry , Dengue/prevention & control , Antibodies, Viral , Viral Envelope Proteins/chemistry , Antibodies, Neutralizing , Epitopes , Cross Reactions
7.
J Biotechnol ; 353: 28-35, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35623476

ABSTRACT

Sericin, a silk-derived non-immunogenic protein, has been used to improve cell culture performance by increasing viability, cell concentration, and promoting adherence of several cell lines. Here, we hypothesized that the properties of sericin can enhance the amplification of flaviviruses in cell cultures. The propagation of flavivirus is inefficient and limits scientific research. Zika virus (ZIKV) is an important human pathogen that has been widely studied because of its high impact on public health. There is a need to amplify Zika virus both for research and vaccine development. In this work, we show that sericin improves ZIKV amplification in insect (C6/36) and mammalian (Vero) cell cultures, and that it has a cryoprotectant capacity. Supplementation of cell culture media with sericin at 80 µg/mL resulted in a significant increase of 1 log in the concentration of ZIKV infectious particles produced from both cell lines. Furthermore, final virus yields increased between 5 and 10-fold in Vero cells and between 7 and 23-fold in C6/36 cells when sericin was supplemented, compared to control conditions. These results show that sericin is an effective supplement to increase ZIKV production by Vero and C6/36 cells. Additionally, sericin was a suitable cryoprotective agent, and hence an alternative to FBS and DMSO, for the cryopreservation of C6/36 cells but not for Vero cells.


Subject(s)
Sericins , Zika Virus Infection , Zika Virus , Animals , Cell Culture Techniques/methods , Chlorocebus aethiops , Humans , Insecta , Mammals , Sericins/metabolism , Sericins/pharmacology , Silk/metabolism , Vero Cells , Zika Virus Infection/drug therapy
8.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35563384

ABSTRACT

Neutrophils play a crucial role in eliminating bacteria that invade the human body; however, cathepsin G can induce biofilm formation in a non-biofilm-forming Staphylococcus epidermidis 1457 strain, suggesting that neutrophil proteases may be involved in biofilm formation. Cathepsin G, cathepsin B, proteinase-3, and metalloproteinase-9 (MMP-9) from neutrophils were tested on the biofilm induction in commensal (skin isolated) and clinical non-biofilm-forming S. epidermidis isolates. From 81 isolates, 53 (74%) were aap+, icaA−, icaD− genotype, and without the capacity of biofilm formation under conditions of 1% glucose, 4% ethanol or 4% NaCl, but these 53 non-biofilm-forming isolates induced biofilm by the use of different neutrophil proteases. Of these, 62.3% induced biofilm with proteinase-3, 15% with cathepsin G, 10% with cathepsin B and 5% with MMP -9, where most of the protease-induced biofilm isolates were commensal strains (skin). In the biofilm formation kinetics analysis, the addition of phenylmethylsulfonyl fluoride (PMSF; a proteinase-3 inhibitor) showed that proteinase-3 participates in the cell aggregation stage of biofilm formation. A biofilm induced with proteinase-3 and DNAse-treated significantly reduced biofilm formation at an early time (initial adhesion stage of biofilm formation) compared to untreated proteinase-3-induced biofilm (p < 0.05). A catheter inoculated with a commensal (skin) non-biofilm-forming S. epidermidis isolate treated with proteinase-3 and another one without the enzyme were inserted into the back of a mouse. After 7 days of incubation period, the catheters were recovered and the number of grown bacteria was quantified, finding a higher amount of adhered proteinase-3-treated bacteria in the catheter than non-proteinase-3-treated bacteria (p < 0.05). Commensal non-biofilm-forming S. epidermidis in the presence of neutrophil cells significantly induced the biofilm formation when multiplicity of infection (MOI) 1:0.01 (neutrophil:bacteria) was used, but the addition of a cocktail of protease inhibitors impeded biofilm formation. A neutrophil:bacteria assay did not induce neutrophil extracellular traps (NETs). Our results suggest that neutrophils, in the presence of commensal non-biofilm-forming S. epidermidis, do not generate NETs formation. The effect of neutrophils is the production of proteases, and proteinase-3 releases bacterial DNA at the initial adhesion, favoring cell aggregation and subsequently leading to biofilm formation.


Subject(s)
Neutrophils , Peptide Hydrolases , Staphylococcal Infections , Staphylococcus epidermidis , Animals , Biofilms , Cathepsin B , Cathepsin G , Metalloproteases , Mice , Myeloblastin , Neutrophils/metabolism , Peptide Hydrolases/metabolism , Staphylococcal Infections/microbiology
9.
Biomolecules ; 12(4)2022 03 24.
Article in English | MEDLINE | ID: mdl-35454079

ABSTRACT

There is a sex bias in tuberculosis's severity, prevalence, and pathogenesis, and the rates are higher in men. Immunological and physiological factors are fundamental contributors to the development of the disease, and sex-related factors could play an essential role in making women more resistant to severe forms of the disease. In this study, we evaluated sex-dependent differences in inflammatory markers. Serum samples were collected from 34 patients diagnosed with pulmonary TB (19 male and 15 female) and 27 healthy controls (18 male and 9 female). Cytokines IL2, IL4, IL6, IL8, IL10, IFNγ, TNFα, and GM-CSF, and eicosanoids PGE2, LTB4, RvD1, and Mar1 were measured using commercially available immunoassays. The MDA, a product of lipidic peroxidation, was measured by detecting thiobarbituric-acid-reactive substances (TBARS). Differential inflammation patterns between men and women were observed. Men had higher levels of IL6, IL8, and TNFα than women. PGE2 and LTB4 levels were higher in patients than healthy controls, but there were no differences for RvD1 and Mar1. Women had higher RvD1/PGE2 and RvD1/LTB4 ratios among patients. RvD1 plays a vital role in resolving the inflammatory process of TB in women. Men are the major contributors to the typical pro-inflammatory profile observed in the serum of tuberculosis patients.


Subject(s)
Tuberculosis, Pulmonary , Tuberculosis , Dinoprostone , Eicosanoids , Female , Humans , Inflammation/complications , Interleukin-6 , Interleukin-8 , Leukotriene B4 , Male , Tuberculosis/complications , Tuberculosis, Pulmonary/complications , Tumor Necrosis Factor-alpha
10.
J Immunol Res ; 2022: 2909487, 2022.
Article in English | MEDLINE | ID: mdl-35402623

ABSTRACT

The process by which blood cells are generated has been widely studied in homeostasis and during pathogen-triggered inflammatory response. Recently, murine lungs have been shown to be a significant source of hematopoietic progenitors in a process known as extramedullary hematopoiesis. Using multiparametric flow cytometry, we have identified mesenchymal, endothelial, and hematopoietic progenitor cells that express the secreted small protein Isthmin 1 (ISM1). Further characterization of hematopoietic progenitor cells indicated that ISM1+ Lineage- Sca-1+ c-kit+ (ISM1+ LSK) cells are enriched in short-term hematopoietic stem cells (ST-HSCs). Moreover, most Sca-1+ ISM1+ cells express the residence marker CD49a, and this correlated with their localization in the extravascular region of the lung, indicating that ISM1+ cells are lung-resident cells. We also observed that ISM1+ cells express TLR4, TLR5, and TLR9, and, in a mouse model of sepsis induced by P. aeruginosa, we observed that all the LSK and ISM1+LSK cells were affected. We conclude that ISM1 is a novel biomarker associated with progenitor-like cells. ISM1+ cells are involved in the response to a bacterial challenge, suggesting an association between ISM1-producing cells and dangerous inflammatory responses like sepsis.


Subject(s)
Hematopoietic Stem Cells , Sepsis , Animals , Hematopoiesis , Homeostasis , Intercellular Signaling Peptides and Proteins/metabolism , Lung/metabolism , Mice , Mice, Inbred C57BL , Proteins , Sepsis/metabolism
11.
medRxiv ; 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35169806

ABSTRACT

There is still a need for safe, efficient and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at low cost similar to influenza virus vaccines and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737. Funding was provided by Avimex and CONACYT.

12.
Sci Rep ; 12(1): 2322, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149705

ABSTRACT

Acute lymphocytic leukemia is the most common type of cancer in pediatric individuals. Glucose regulated protein (GRP78) is an endoplasmic reticulum chaperone that facilitates the folding and assembly of proteins and regulates the unfolded protein response pathway. GRP78 has a role in survival of cancer and metastasis and cell-surface associated GRP78 (sGRP78) is expressed on cancer cells but not in normal cells. Here, we explored the presence of sGRP78 in pediatric B-ALL at diagnosis and investigated the correlation with bona fide markers of leukemia. By using a combination of flow cytometry and high multidimensional analysis, we found a distinctive cluster containing high levels of sGRP78, CD10, CD19, and CXCR4 in bone marrow samples obtained from High-risk leukemia patients, which was absent in the compartment of Standard-risk leukemia. We confirmed that sGRP78+CXCR4+ blood-derived cells were more frequent in High-risk leukemia patients. Finally, we analyzed the dissemination capacity of sGRP78 leukemia cells in a model of xenotransplantation. sGRP78+ cells emigrated to the bone marrow and lymph nodes, maintaining the expression of CXCR4. Testing the presence of sGRP78 and CXCR4 together with conventional markers may help to achieve a better categorization of High and Standard-risk pediatric leukemia at diagnosis.


Subject(s)
Endoplasmic Reticulum Chaperone BiP/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, CXCR4/metabolism , Adolescent , Animals , Antigens, CD/metabolism , Cell Line , Child , Child, Preschool , Female , Humans , Male , Mice, Inbred BALB C , Neoplasm Transplantation , Neoplastic Cells, Circulating/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Risk Factors
13.
Biomolecules ; 12(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35204769

ABSTRACT

Vitamin D has an immunomodulatory function and is involved in eliminating pathogens. Vitamin D deficiencies reported in Type 2 diabetes mellitus (T2DM) patients make them more susceptible to developing tuberculosis (TB). The macrophages are the immune cells that control intracellular pathogens by producing the antimicrobial peptide cathelicidin-LL37. This pathway involves TLR activation by pathogens, vitamin D receptor (VDR) ligation, and the enzyme 1α-hydroxylase Cytochrome P450 Family 27 Subfamily B Member 1 (CYP27B1). However, it is not clear whether the biological actions of vitamin D are affected by high glucose concentrations. This study aimed to evaluate the vitamin D contribution in the expression of VDR and CYP27B1, involved in the conversion of an inactive to an active form of vitamin D in the infected macrophages using M. tuberculosis as an infection model. The expression of LL37 and the nucleus translocation of VDR were evaluated as the readout of the response of vitamin D and determined if those processes are affected by glucose concentrations. Macrophages from healthy donors were cultured under glucose concentrations of 5.5, 15, or 30 mM, stimulated with vitamin D in inactive (25(OH)D3) or active (1,25(OH)2D3) forms, and infected with M. tuberculosis. The vitamin D-dependent induction of LL37 and the expression of VDR and CYP27B1 genes were analyzed by qPCR, and VDR translocation was analyzed in nuclear protein extracts by ELISA. M. tuberculosis downregulated the expression of LL37 regardless of the glucose concentration, whereas VDR and CYP27B1 upregulated it regardless of the glucose concentration. After evaluating two concentrations of vitamin D, 1 nM or 1 µM, the high concentration (1 µM) was necessary to restore the induction of LL37 expression in M. tuberculosis-infected macrophages. High concentrations of the inactive form of vitamin D restore the infected macrophages' ability to express LL37 regardless of the glucose concentration. This finding supports the idea that vitamin D administration in patients with T2DM could benefit TB control and prevention.


Subject(s)
Diabetes Mellitus, Type 2 , Vitamin D , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Humans , Macrophages/metabolism , Vitamin D/pharmacology , Vitamins
14.
Vaccine ; 39(48): 6990-7000, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34753613

ABSTRACT

The genus flavivirus of the Flaviridae family includes several human pathogens, like dengue, Zika, Japanese encephalitis, and yellow fever virus. These viruses continue to be a significant threat to human health. Vaccination remains the most useful approach to reduce the impact of flavivirus fever. However, currently available vaccines can induce severe side effects or have low effectiveness. An alternative is the use of recombinant vaccines, of which virus-like particles (VLP) and single-round infectious particles (SRIP) are of especial interest. VLP consist of the virus structural proteins produced in a heterologous system that self-assemble in a structure almost identical to the native virus. They are highly immunogenic and have been effective vaccines for other viruses for over 30 years. SRIP are promising vaccine candidates, as they induce both cellular and humoral responses, as viral proteins are expressed. Here, the state of the art to produce both types of particles and their use as vaccines against flaviviruses are discussed. We summarize the different approaches used for the design and production of flavivirus VLP and SRIP, the evidence for their safety and efficacy, and the main challenges for their use as commercial vaccines.


Subject(s)
Flavivirus , Viral Vaccines , Zika Virus Infection , Zika Virus , Humans , Vaccines, Synthetic , Yellow fever virus , Zika Virus Infection/prevention & control
15.
Antioxidants (Basel) ; 10(10)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34679707

ABSTRACT

Tuberculosis (TB) is one of the highest infectious burdens worldwide. An excess of inflammation and inadequate antioxidant defense mechanisms are believed to lead to chronic inflammation and lung damage in tuberculosis (TB). However, circulating metabolites do not always replicate lung-associated biomarkers that define the pathobiology of the disease. The objective of this study was to determine the utility of exhaled breath condensate (EBC), a non-invasive and straightforward sample, to evaluate alveolar space-derived metabolites of redox state and inflammation. We assessed the levels of exhaled oxidant/antioxidant parameters (8-isoprostane, MDA, GSH), inflammatory markers, such as nucleosomes, cytokines (IL-2, IL-4, IL-6 and IL-8, IL-10, GM-CSF, TNF-α, and IFN-γ) and lipid mediators (PGE2, LTB4, RvD1, and Mar1), in patients with recently diagnosed pulmonary TB and healthy controls' EBC and serum. The TB patients showed 36% lower GSH levels, and 2-, 1.4-, 1.1-, and 50-fold higher levels of 8-isoprostanes, nucleosomes, IL-6, and LTB4, respectively, in EBC. There was no correlation between EBC and serum, highlighting the importance of measuring local biomarkers. Quantitation of local inflammatory molecules and redox states in EBC would help find biomarkers useful for pharmacological and follow-up studies in pulmonary tuberculosis.

16.
Infect Drug Resist ; 14: 929-946, 2021.
Article in English | MEDLINE | ID: mdl-33727834

ABSTRACT

The diagnosis of tuberculosis (TB) in children is difficult because of the low sensitivity and specificity of traditional microbiology techniques in this age group. Whereas in adults the culture of Mycobacterium tuberculosis (M. tuberculosis), the gold standard test, detects 80% of positive cases, it only detects around 30-40% of cases in children. The new methods based on the immune response to M. tuberculosis infection could be affected by many factors. It is necessary to evaluate the medical record, clinical features, presence of drug-resistant M. tuberculosis strains, comorbidities, and BCG vaccination history for the diagnosis in children. There is no ideal biomarker for all TB cases in children. A new strategy based on personalized diagnosis could be used to evaluate specific molecules produced by the host immune response and make therapeutic decisions in each child, thereby changing standard immunological signatures to personalized signatures in TB. In this way, immune diagnosis, prognosis, and the use of potential immunomodulators as adjunct TB treatments will meet personalized treatment.

17.
J Immunol Res ; 2020: 8235149, 2020.
Article in English | MEDLINE | ID: mdl-33005692

ABSTRACT

Childhood tuberculosis (TB) is a significant public health problem and the ninth leading cause of death worldwide. Progression of Mycobacterium tuberculosis infection to active disease depends on mycobacterial virulence, environmental diversity, and host susceptibility and immune response. In children, malnutrition and immaturity of the immune system contribute to an inadequate immune response. Coinfections, though rarely described in TB, might be associated with host immune deficiencies. Here, we describe the immunological evaluation of eight pediatric patients infected with a member of the M. tuberculosis complex, most of them with concomitant pulmonary infections (bacteria, viruses, or fungi). We assessed the functionality of several innate immunity receptors, IL-12 receptor, and IFN-γ receptor, as well as the antioxidant levels (glutathione), which are essential mechanisms for fighting intracellular pathogens such as M. tuberculosis. This study is aimed at developing a thorough immunological evaluation of patients with TB and a coinfection.


Subject(s)
Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Adolescent , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Biomarkers , Child , Child, Preschool , Cytokines/metabolism , Disease Management , Disease Susceptibility/immunology , Female , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Infant , Male , Oxidative Stress , Precision Medicine/methods , Toll-Like Receptors/metabolism , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/microbiology
18.
J Immunol Res ; 2019: 1297131, 2019.
Article in English | MEDLINE | ID: mdl-31886294

ABSTRACT

BACKGROUND: The treatment of latent tuberculosis infection (LTBI) in individuals at risk of reactivation is essential for tuberculosis control. However, blood biomarkers associated with LTBI treatment have not been identified. METHODS: Blood samples from tuberculin skin test (TST) reactive individuals were collected before and after one and six months of isoniazid (INH) therapy. Peripheral mononuclear cells (PBMC) were isolated, and an in-house interferon-γ release assay (IGRA) was performed. Expression of chemokine ligand 4 (CCL4), chemokine ligand 10 (CXCL10), chemokine ligand 11 (CXCL11), interferon alpha (IFNA), radical S-adenosyl methionine domain-containing 2 (RSAD2), ubiquitin-specific peptidase 18 (USP18), interferon-induced protein 44 (IFI44), interferon-induced protein 44 like (IFI44L), interferon-induced protein tetratricopeptide repeats 1(IFIT1), and interleukin 2 receptor subunit alpha (IL2RA) mRNA levels were assessed by qPCR before, during, and after INH treatment. RESULTS: We observed significantly lower relative abundances of USP18, IFI44L, IFNA, and IL2RA transcripts in PBMC from IGRA-positive individuals compared to levels in IGRA-negative individuals before INH therapy. Also, relative abundance of CXCL11 was significantly lower in IGRA-positive than in IGRA-negative individuals before and after one month of INH therapy. However, the relative abundance of CCL4, CXCL10, and CXCL11 mRNA was significantly decreased and that of IL2RA and USP18 significantly increased after INH therapy, regardless of the IGRA result. Our results show that USP18, IFI44L, IFIT1, and IL2RA relative abundances increased significantly, meanwhile the relative abundance of CCL4, CXCL11, and IFNA decreased significantly after six months of INH therapy in TST-positive individuals. CONCLUSIONS: Changes in the profiles of USP18, IL2RA, IFNA, CCL4, and CXCL11 expressions during INH treatment in TST-positive individuals, regardless of IGRA status, are potential tools for monitoring latent tuberculosis treatment.


Subject(s)
Gene Expression , Interleukin-2 Receptor alpha Subunit/genetics , Latent Tuberculosis/genetics , Latent Tuberculosis/microbiology , Ubiquitin Thiolesterase/genetics , Adult , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Biomarkers , Female , Humans , Interferon-gamma Release Tests , Interleukin-2 Receptor alpha Subunit/metabolism , Isoniazid/pharmacology , Isoniazid/therapeutic use , Latent Tuberculosis/diagnosis , Latent Tuberculosis/drug therapy , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Tuberculin Test , Ubiquitin Thiolesterase/metabolism , Young Adult
19.
Int Immunopharmacol ; 74: 105694, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31226532

ABSTRACT

Resolvins and protectins counter inflammation, enhance phagocytosis, induce bactericidal/permeability-increasing protein (BPI) expression, and restore inflamed tissue to homeostasis. Because modulating the inflammation/antiinflammation balance is important in Mycobacterium tuberculosis infection, we evaluated the effects of resolvins and protectins on human macrophages infected in vitro. Monocyte-derived macrophages were infected with M. tuberculosis H37Rv at a multiplicity of infection (MOI) of 5 and treated 1 h post-infection in vitro with 100 nM LXA4, RvD1, RvD2, PD1 or 150 nM Mar1. After 24 h, cytokine production was measured by Luminex, and BPI and cathelicidin LL37 expression was determined by real-time PCR. Macrophage bactericidal activity was assessed by colony-forming units (CFUs) 3 days posttreatment. Nuclear translocation of Nrf2 was assessed by ELISA, NFκB translocation was determined by imaging cytometry, and BPI production was determined by fluorescence microscopy. We found that all lipids reduced LPS-dependent and M. tuberculosis-induced TNF-α production. RvD1 and Mar1 also induced a significant reduction in M. tuberculosis intracellular growth. RvD1 and Mar1 elicited distinct immunomodulatory patterns. RvD1 induced upregulation of both antimicrobial effector genes (BPI and LL37) and cytokines (GM-CSF and IL-6). Mar1 induced only BPI overexpression. RvD1 and Mar1 induced NFκB nuclear translocation, but only Mar1 induced Nrf2 translocation. Inhibition of G protein-coupled receptor signaling in infected macrophages abrogated the regulatory effects of RvD1. In conclusion, RvD1 and Mar1 modulate the anti-inflammatory and antimicrobial properties of M. tuberculosis-infected human macrophages. Since both proresolving lipids are inducible and synthesized from dietary components, they have immunotherapeutic potential against tuberculosis when inflammation is uncontrolled.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Docosahexaenoic Acids/pharmacology , Inflammation/therapy , Macrophages/immunology , Mycobacterium tuberculosis/physiology , Tuberculosis/therapy , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Blood Proteins/genetics , Blood Proteins/metabolism , Cell Growth Processes , Cells, Cultured , Humans , Immunomodulation , Inflammation/immunology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Phagocytosis , Tuberculosis/immunology , Tumor Necrosis Factor-alpha/metabolism , Cathelicidins
20.
Microb Pathog ; 132: 166-177, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31054870

ABSTRACT

The macrophage innate immune response is outlined through recognition of the components of Mycobacterium tuberculosis. DNA of M. tuberculosis (MtbDNA) is recognized by macrophages, but the implications of this recognition are poorly characterized. Stimulation of murine macrophages with MtbDNA induces autophagy, a process that promotes elimination of intracellular pathogens. However, it remains unknown whether this or other phenomena also occur in human cells. In this work, we studied the innate response profiles of human macrophages after stimulation with DNA from virulent M. tuberculosis H37Rv. Human monocyte-derived macrophages were polarized into M1 and M2 phenotypes and stimulated with MtbDNA. The plasma membrane markers of the phenotype, production of TNF-α, and induction of autophagy were evaluated. Our results indicate that MtbDNA induced phenotypical changes, the significant production of TNF-α, and autophagy confirmed by the augmented expression of immunity related GTPase M (IRGM) and autophagy related ATG16L1 genes in M1 macrophages, whereas M2 macrophages exhibited limited responses. In addition, MtbDNA activation was TLR-9-dependent. Although TLR-9 expression was similar between M1 and M2 macrophages, only M1 macrophages were fully responsive to MtbDNA. In conclusion, MtbDNA recognition enhanced the antimicrobial mechanisms of M1 macrophages.


Subject(s)
Autophagy , DNA, Bacterial/isolation & purification , Macrophages/metabolism , Mycobacterium tuberculosis/genetics , Tumor Necrosis Factor-alpha/metabolism , DNA, Bacterial/genetics , Humans , Immunity, Innate , Monocytes , Mycobacterium tuberculosis/metabolism , Phenotype , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...